Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper examines a return to the thick space of the masonry wall. The wall is where a building embraces its context and where humanity can physically experience this nexus. Contemporary technologies applied to masonry construction offer a return to both tactile solidity and the space of interaction between a building and its users. Precedents from Catalan vernacular to Herzog & de Meuron will be contrasted to offer a way of thinking through the spatial potential created through the modularity and specificity of blocks.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Living tissues are still far from being used as practical components in biohybrid robots because of limitations in life span, sensitivity to environmental factors, and stringent culture procedures. Here, we introduce fungal mycelia as an easy-to-use and robust living component in biohybrid robots. We constructed two biohybrid robots that use the electrophysiological activity of living mycelia to control their artificial actuators. The mycelia sense their environment and issue action potential–like spiking voltages as control signals to the motors and valves of the robots that we designed and built. The paper highlights two key innovations: first, a vibration- and electromagnetic interference–shielded mycelium electrical interface that allows for stable, long-term electrophysiological bioelectric recordings during untethered, mobile operation; second, a control architecture for robots inspired by neural central pattern generators, incorporating rhythmic patterns of positive and negative spikes from the living mycelia. We used these signals to control a walking soft robot as well as a wheeled hard one. We also demonstrated the use of mycelia to respond to environmental cues by using ultraviolet light stimulation to augment the robots’ gaits.more » « less
-
Historically, ornament has provided a tether to cultural meaning in the built world. Ornament is tied to specific cultural attributes. As an integral part of the construction, ornament negotiates with the culture from which it emerges. It is a built grammar, but it is also expressive of its own making as well as the society that shaped it. Modernity has largely reversed this connection with some important exceptions. There is a strong history of architects developing space through the design of the construction that provides what Louis Sullivan would call an “organic” link to the ornament that emerges, and this nexus of structure and form becomes the “site” of the ornament. Luigi Nervi’s ferro-cement shells and Frank Lloyd Wright’s textile blocks are two salient examples that have, through necessity or interest, developed details that generate entire projects, which then generate new projects as that construction/detail is refined and builds on the culture that inspired it. Ornament is thus a negotiation between the built artifact and the meaning of its “ornamented” expression. As architects, we now operate in a world of off-the-shelf selected components. This attitude, combined with the integration of building components into BIM programs, has made the architect a selector/consumer rather than a designer of the construction, making ornament a part of this selection process – i.e., decoration. The research project Woven Blocks is an attempt to reexamine the way in which architects can shape space through the design of the construction itself. Pulling from Frank Lloyd Wright’s textile block system, Woven Blocks imagines a 3D-printed block capable of taking advantage of a self-supporting system of enclosure that can be “programmed” with function, take on aspects of the context it resides in, and reflect the nature of its making. The project is the design of the manufacturing process as well as its end-product. This enables the building material to respond directly to its program, shaping space/meaning in potentially a more “plastic” way. This paper is first a consideration of architects thinking through construction, then a reflection on the cultural implication of their production. The site of ornament also implies a shift in perception from the textile patterns of specific cultures found in ceramics, clothing, wall mats, or flooring onto the building surface and into its lashing to the frame and the integration of its various services/systems. This lens will serve to frame the research around the project Woven Blocks, examining the efforts of the authors to shape the process of construction as a place from which ornament can emerge and meaning can be rediscovered.more » « less
-
na (Ed.)Environmental observation networks, such as AmeriFlux, are foundational for monitoring ecosystem response to climate change, management practices, and natural disturbances; however, their effectiveness depends on their representativeness for the regions or continents. We proposed an empirical, time series approach to quantify the similarity of ecosystem fluxes across AmeriFlux sites. We extracted the diel and seasonal characteristics (i.e., amplitudes, phases) from carbon dioxide, water vapor, energy, and momentum fluxes, which reflect the effects of climate, plant phenology, and ecophysiology on the observations, and explored the potential aggregations of AmeriFlux sites through hierarchical clustering. While net radiation and temperature showed latitudinal clustering as expected, flux variables revealed a more uneven clustering with many small (number of sites < 5), unique groups and a few large (> 100) to intermediate (15–70) groups, highlighting the significant ecological regulations of ecosystem fluxes. Many identified unique groups were from under-sampled ecoregions and biome types of the International Geosphere-Biosphere Programme (IGBP), with distinct flux dynamics compared to the rest of the network. At the finer spatial scale, local topography, disturbance, management, edaphic, and hydrological regimes further enlarge the difference in flux dynamics within the groups. Nonetheless, our clustering approach is a data-driven method to interpret the AmeriFlux network, informing future cross-site syntheses, upscaling, and model-data benchmarking research. Finally, we highlighted the unique and underrepresented sites in the AmeriFlux network, which were found mainly in Hawaii and Latin America, mountains, and at under- sampled IGBP types (e.g., urban, open water), motivating the incorporation of new/unregistered sites from these groups.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract Remote sensing is a powerful tool for understanding and scaling measurements of plant carbon uptake via photosynthesis, gross primary productivity (GPP), across space and time. The success of remote sensing measurements can be attributed to their ability to capture valuable information on plant structure (physical) and function (physiological), both of which impact GPP. However, no single remote sensing measure provides a universal constraint on GPP and the relationships between remote sensing measurements and GPP are often site specific, thereby limiting broader usefulness and neglecting important nuances in these signals. Improvements must be made in how we connect remotely sensed measurements to GPP, particularly in boreal ecosystems which have been traditionally challenging to study with remote sensing. In this paper we improve GPP prediction by using random forest models as a quantitative framework that incorporates physical and physiological information provided by solar-induced fluorescence (SIF) and vegetation indices (VIs). We analyze 2.5 years of tower-based remote sensing data (SIF and VIs) across two field locations at the northern and southern ends of the North American boreal forest. We find (a) remotely sensed products contain information relevant for understanding GPP dynamics, (b) random forest models capture quantitative SIF, GPP, and light availability relationships, and (c) combining SIF and VIs in a random forest model outperforms traditional parameterizations of GPP based on SIF alone. Our new method for predicting GPP based on SIF and VIs improves our ability to quantify terrestrial carbon exchange in boreal ecosystems and has the potential for applications in other biomes.more » « less
-
Abstract. Although the concepts of nonuniform sampling (NUS) and non-Fourier spectral reconstruction in multidimensional NMR began to emerge 4 decades ago (Bodenhausen and Ernst, 1981; Barna and Laue, 1987), it is only relatively recently that NUS has become more commonplace. Advantages of NUS include the ability to tailor experiments to reduce data collection time and to improve spectral quality, whether through detection of closely spaced peaks (i.e., “resolution”) or peaks of weak intensity (i.e., “sensitivity”). Wider adoption of these methods is the result of improvements in computational performance, a growing abundance and flexibility of software, support from NMR spectrometer vendors, and the increased data sampling demands imposed by higher magnetic fields. However, the identification of best practices still remains a significant and unmet challenge. Unlike the discrete Fourier transform, non-Fourier methods used to reconstruct spectra from NUS data are nonlinear, depend on the complexity and nature of the signals, and lack quantitative or formal theory describing their performance. Seemingly subtle algorithmic differences may lead to significant variabilities in spectral qualities and artifacts. A community-based critical assessment of NUS challenge problems has been initiated, called the “Nonuniform Sampling Contest” (NUScon), with the objective of determining best practices for processing and analyzing NUS experiments. We address this objective by constructing challenges from NMR experiments that we inject with synthetic signals, and we process these challenges using workflows submitted by the community. In the initial rounds of NUScon our aim is to establish objective criteria for evaluating the quality of spectral reconstructions. We present here a software package for performing the quantitative analyses, and we present the results from the first two rounds of NUScon. We discuss the challenges that remain and present a roadmap for continued community-driven development with the ultimate aim of providing best practices in this rapidly evolving field. The NUScon software package and all data from evaluating the challenge problems are hosted on the NMRbox platform.more » « less
An official website of the United States government

Full Text Available